
Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis
Rodríguez, Jean
Bonne, Damien
Enders, Dieter
Combining the important research topic of multiple bond–formingtransformations with green chemistry, this book helps chemistsidentify recent sustainable stereoselective syntheticsequences. Combines the important research topic ofmultiple bond–forming transformations with green chemistry andsustainable development Offers a valuable resource for preparingcompounds with multiple stereogenic centers, an important field forsynthetic chemists Organizes chapters by molecular structureof final products, making for a handbook–style resource Discusses applications of the synthesisof natural products and of drug intermediates Brings together otherwise–scatteredinformation about a number of key, efficient chemical reactions INDICE: Contents.Foreword.1Definitions and classifications of MBFT sDamien Bonne, Jean Rodriguez.1.1 Introduction.1.2 Definitions.1.3 Conclusion and outlook.References.Part 1: Stereoselective Synthesis of Heterocycles.2 Five–membered HeterocyclesHanmin Huang, Pan Xie.2.1 Introduction.2.2 Monocyclic targets.2.2.1 1,3–Dipolar cycloaddition.2.2.2 Michael addition initiated domino process.2.2.3 Multicomponent reactions.2.2.4 Carbohalogenation reactions.2.2.5 Radical processes.2.3 Fused polycyclic targets.2.3.1 Cycloaddition reactions.2.3.2 Domino cyclization reactions.2.4 Bridged polycyclic targets.2.5 Summary and outlook.References.3 Six–membered heterocyclesGiammarco Tenti, M. Teresa Ramos and J. CarlosMenéndez.3.1 Introduction.3.2 Monocyclic targets.3.2.1 Nitrogen–only heterocycles.3.2.2 Oxygen–containing heterocycles.3.3 Fused polycyclic targets.3.3.1 Nitrogen–only fused polycyclic targets.3.3.2 Oxygen–containing fused polycyclic targets.3.3.3 Sulfur–containing fused polycyclic targets.3.4 Bridged polycyclic targets.3.5 Polycyclic spiro targets.3.6 Summary and outlook.References.4 Other heterocyclesQian Wang and Jieping Zhu.4.1 Introduction.4.2 Synthesis of medium–sized monocyclic, fused and bridgedpolycyclic heterocycles.4.2.1 Ring synthesis by ring transformation viarearrangements/ring expansions.4.2.2 Ring synthesis by annulation.4.3 Summary and outlook.References.Part 2: Stereoselective Synthesis of Carbocycles.5 Three and four–membered carbocycles Renata Marcia de Figueiredo, Gilles Niel andJean–Marc Campagne.5.1 Introduction.5.2 Cyclopropane derivatives.5.2.1 Organocatalysis and related reactions (Michael–InitiatedRing–Closure Reactions (MIRC).5.2.2 Organometallics and metal catalysis.5.2.3 Lewis Acid catalysis.5.2.4 Pericyclic domino strategies.5.2.5 Radical domino strategies.5.3 Cyclobutane derivatives.5.3.1 Organocatalyzed cyclobutanations.5.3.2 Organometallics and metal catalysis.5.3.3 Acid or base catalysis.5.3.4 Multicomponent reactions (MCR).5.4 Summary and outlook.References.6 Five–Membered Carbocycles Vijay Nair and Rony Rajan Paul.6.1 Introduction.6.2 Monocyclic targets.6.2.1 Metal catalyzed reactions.6.2.2 Organocatalytic reactions.6.2.3 Miscellaneous reactions.6.3 Fused polycyclic targets.6.3.1 Metal catalyzed reactions.6.3.2 Organocatalytic reactions.6.3.3 Lewis acid catalyzed reactions.6.3.4 Miscellaneous reactions.6.4 Bridged polycyclic targets.6.5 Conclusion and outlook.References.7 Stereoselective Synthesis of Six–Membered CarbocyclesMuriel Amatore, Corinne Aubert, Marion Barbazanges, MarineDesage–El Murr and Cyril Ollivier.7.1 Introduction.7.2 Metal–catalyzed stereoselective multiple bond–formingtransformations.7.2.1 Introduction.7.2.2 Cycloadditions.7.2.3 Metal–catalyzed cascades as formal [2+2+2]cycloadditions.7.2.4 Metal–catalyzed cycloisomerization cascades.7.3 Enantioselective organocatalyzed synthesis of six–memberedrings.7.3.1 Organocatalyzed miscellaneous reactions.7.3.2 Organocatalyzed cascade and multicomponent reactions.7.3.3 Polycyclization cascade reactions.7.4 Stereoselective multiple bond–forming radicaltransformations.7.4.1 Intermolecular cascade reactions.7.4.2 Intramolecular cascade reactions.7.5 Conclusions.References.8 Seven– and Eight–Membered Carbocycles Gérard Buono, Hervé Clavier, Laurent Giordano andAlphonse Tenaglia.8.1 Introduction.8.2 Cycloheptenes.8.3 Cycloheptadienes.8.4 Cycloheptatrienes.8.5 Cyclooctenes.8.6 Cyclooctadienes.8.7 Cyclooctatrienes.8.8 Cyclooctatetraenes.8.9 Concluding Remarks.References.Part 3: Stereoselective Synthesis of SpirocyclicCompounds.9 Metal–Assisted MethodologiesGaëlle Chouraqui, Laurent Commeiras and Jean–LucParrain.9.1 Introduction.9.2 Quaternary spirocenter.9.2.1 Copper assisted methodologies.9.2.2 Gold assisted methodologies.9.2.3 Palladium assisted methodologies.9.2.4 Rhodium assisted methodologies.9.2.5 Platinum assisted metodologies.9.3 a–Heteroatom substituted–spirocenter.9.3.1 Zinc, magnesium and copper assisted methodologies.9.3.2 Titanium assisted methodologies.9.3.3 Gold and Platinum assisted methodologies.9.3.4 Palladium assisted methodologies.9.3.5 Rhodium assisted methodologies.9.4 a,a –diHeteroatom substituted–spirocenter.9.5 Conclusion and outlook.10 Organocatalyzed MethodologiesRamon Rios.10.1 Introduction.10.2 Enantioselective synthesis of all–carbon spirocenters.10.2.1 Organocatalytic enantioselective methodologies for thesynthesis of spirooxindoles.10.3 Enantioselective synthesis spirocenters with at least 1heteroatom.10.3.1 Synthesis of spirooxindoles.10.3.2 Synthesis of other spirocycles.10.4 Conclusion and Outlook.References.Part 4: Stereoselective Synthesis of AcyclicCompounds.11 Metal–catalyzed methodologiesGabriela Guillena and Diego J. Ramón.11.1 Introduction.11.2 Anion relay approach.11.3 Mannich reaction.11.3.1 Diastereoselective approach.11.3.2 Enantioselective approach.11.4 Reactions involving isonitrile.11.4.1 Diastereoselective Passerini reaction.11.4.2 Enantioselective Passerini reaction.11.4.3 Diastereoselective Ugi reaction.11.5 1,2–Addition–type processes.11.5.1 Diastereoselective approach.11.5.2 Enantioselective approach.11.6 Michael–type processes.11.6.1 Diastereoselective approach.11.6.2 Enantioselective approach.11.7 Summary and outlook.References.12 Organocatalyzed methodologiesVincent Coeffard, Christine Greck, Xavier Moreau andChristine Thomassigny.12.1 Introduction.12.2 Aminocatalysis.12.2.1 Enamine–enamine activation.12.2.2 Iminium–enamine activation.12.3 NHC Activation.12.4 H–bonding activation.12.5 Phase–transfer catalysis.12.6 Summary and outlook.References.Part 5: Multiple Bond–Forming Transformations: SyntheticApplications.13 MBFTs for the Total Synthesis of Natural ProductsYanxing Jia.13.1 Introduction.13.2 Anionic–initiated MBFTs.13.3 Cationic–initiated MBFTs.13.4 Radical–mediated MBFTs.13.5 Pericyclic MBFTs.13.6 Transition–metal–catalyzed MBFTs.13.7 Summary and outlook.References.14 Synthesis of Biologically Relevant MoleculesMatthijs J. van Lint, Eelco Ruijter, and Romano V.A.Orru.14.1 Introduction.14.2 Organocatalyzed MBFTs for BRMs.14.3 Multicomponent MBFTs for BRMs.14.4 Palladium catalyzed MBFTs for BRMs.14.5 Conclusion and outlook.References.15 Industrial applications of multiple bond–formingtransformations (MBFTs)Tryfon Zarganes Tzitzikas, Ahmad Yazbakand AlexanderDömling.Introduction.Applications of MBFTs.Xylocaine®.Almorexant.(–)–Oseltamivir (Tamiflu®).Telaprevir (Incivek®).Ezetimibe (Zetia®).Crixivan (Indinavir®).Oxytocine Antagonists : Retosiban and Epelsiban. Praziquantel (Biltricide®).Summary and Outlook.References.Index
- ISBN: 978-1-118-67271-6
- Editorial: Wiley–Blackwell
- Encuadernacion: Cartoné
- Páginas: 496
- Fecha Publicación: 15/05/2015
- Nº Volúmenes: 1
- Idioma: Inglés