Observing the environment and recognising patterns for the purpose of decision making is fundamental to human nature. This book deals with the scientific discipline that enables similar perception in machines through pattern recognition (PR), which has application in diverse technology areas. This book is an exposition of principal topics in PR using an algorithmic approach. It providesa thorough introduction to the concepts of PR and a systematic account of themajor topics in PR besides reviewing the vast progress made in the field in recent times. It includes basic techniques of PR, neural networks, support vector machines and decision trees. While theoretical aspects have been given due coverage, the emphasis is more on the practical. The book is replete with examples and illustrations and includes chapter-end exercises. It is designed to meet the needs of senior undergraduate and postgraduate students of computer science and allied disciplines. Contains numerous exercises, as well as learning objectives and summaries for each chapterExplains the hidden Markov model for speech and speaker recognition tasksDiscusses support vector machines, with suitable examples INDICE: Introduction. Representation. Nearest Neighbour Based Classifiers.Bayes Classifier. Hidden Markov Models. Decision Trees. Support Vector Machines. Combination of Classifiers. Clustering. Summary. An Application: Handwritten Digit Recognition.
- ISBN: 978-0-85729-494-4
- Editorial: Springer
- Encuadernacion: Rústica
- Páginas: 263
- Fecha Publicación: 31/03/2011
- Nº Volúmenes: 1
- Idioma: Inglés