The book is based on the observation that communication is the central operation of discovery in all the sciences. In its 'active mode' we use it to 'interrogate' the physical world, sending appropriate 'signals' and receiving nature's 'reply'. In the 'passive mode' we receive nature's signals directly. Since we never know a prioriwhat particular return signal will be forthcoming, we must necessarily adopt a probabilistic model of communication. This has developed over the approximately seventy years since it's beginning, into a Statistical Communication Theory (or SCT). Here it is the set or ensemble of possible results which is meaningful. From this ensemble we attempt to construct in the appropriate model format, based on our understanding of the observed physical data and on the associated statistical mechanism, analytically represented by suitable probability measures. Since its inception in the late '30's of the last century, and in particular subsequent to World War II, SCT has grown into a major field of study. As we have noted above, SCT is applicable to all branches of science. The latter itself is inherently and ultimately probabilistic at all levels. Moreover, in the natural world there is always a random background'noise' as well as an inherent a priori uncertainty in the presentation of deterministic observations, i.e. those which are specifically obtained, a posteriori. The purpose of the book is to introduce Non-Gaussian statistical communication theory and demonstrate how the theory improves probabilistic model. Thebook was originally planed to include 24 chapters as seen in the table of preface. Dr. Middleton completed first 10 chapters prior to his passing in 2008. Bibliography which represents remaining chapters are put together by the author's close colleagues; Drs. Vincent Poor, Leon Cohen and John Anderson. INDICE: Foreword by Vincent Poor. Foreword by Blake Middleton. Introduction. Chapter 1. Reception as a Statistical Decision Problem. Chapter 2. Space-Time Covariances, and Wave-Number Frequency Spectra. Chapter 3. Optimum Detection, Space-Time Mathed Filters, and Beam Forming, in Gaussian Noise Fields. Chapter 4. Multiple Alternative Detection. Chapter 5. Bayes Extraction Systems: Signal Estimation and Analysis. Chapter 6. Joint Detection and Estimation, I. Foundations. Chapter 7. Joint Detection and Estimation Under Uncertainty, II. Multiple Hypotheses and Sequential Observations. Chapter 8. The Canonical Channel I: Scalar Field Propagation in a Deterministic Medium. Chapter 9. The Canonical Channel II: Scattering in Random Media. Chapter 10. Non-Gaussian Noise: Probability Distributions and the Scatter Channel. Appendix A.
- ISBN: 978-0-470-94847-7
- Editorial: John Wiley & Sons
- Encuadernacion: Cartoné
- Páginas: 576
- Fecha Publicación: 17/01/2012
- Nº Volúmenes: 1
- Idioma: Inglés