Remote Sensing of Soil and Land Surface Processes: Monitoring, Mapping, and Modeling

Remote Sensing of Soil and Land Surface Processes: Monitoring, Mapping, and Modeling

Melesse, Assefa
Rahmati, Omid
Khsoravi, Khabat

161,20 €(IVA inc.)

Remote Sensing of Soil and Land Surface Processes: Monitoring, Mapping, and Modeling couples artificial intelligence and remote sensing for mapping and modeling natural resources, thus expanding the applicability of AI and machine learning for soils and landscape studies and providing a hybridized approach that also increases the accuracy of image analysis. The book covers topics including digital soil mapping, satellite land surface imagery, assessment of land degradation, and deep learning networks and their applicability to land surface processes and natural hazards, including case studies and real life examples where appropriate. This book offers postgraduates, researchers and academics the latest techniques in remote sensing and geoinformation technologies to monitor soil and surface processes. ? Introduces object-based concepts and applications, enhancing monitoring capabilities and increasing the accuracy of mapping ? Couples artificial intelligence and remote sensing for mapping and modeling natural resources, expanding the applicability of AI and machine learning for soils and sediment studies ? Includes the use of new sensors and their applications to soils and sediment characterization ???????? Includes case studies from a variety of geographical areas INDICE: 1. Introduction to soil and sediment. 2. DInSAR-based assessment of groundwater-induced land subsidence zonation map. 3. Remotely sensed prediction of soil organic carbon employing multivariate regression and factor analysis approaches. 4. Conceptual of soil moisture based on remote sensing and reanalysis dataset. 5. Dust-source monitoring using remote sensing techniques. 6. Land Surface temperature and related issues. 7. Unraveling the changes in soil properties availed by UAV-derivative data in an arid floodplain: lessons learned and things to fathom. 8. Investigating the land use changes effects on the surface temperature using Landsat satellite data. 9. The application of remote sensing on wetlands Spatio-temporal change detection. 10. Machine learning modeling of wind-erodible fractions of soils. 11. Application of remote sensing techniques for evaluating land surfaces vegetation. 12. A Brief Review of Digital Soil Mapping in Iran. 13. Impact of land use and land cover changes on soil erosion. 14. Road-side Slope Erosion using MLS and Remote Sensing. 15. Suspended sediment load and machine learning. 16. Soil Erosion and Sediment Change Detection Using UAV Technology. 17. Monitoring and detection of land subsidence. 18. Drought mapping, modeling and remote sensing. 19. Predictive pedometric mapping of soil texture in small watersheds: Application of the integrated computer-assisted digital maps, machine learning, and limited soil data. 20. Object-based image analysis (OBIA) for gully erosion identification. 21. Landslide detection and monitoring using remote sensing approach. 22. Classification algorithms for remotely sensed images. 23. Spatial analysis of sediment connectivity and its applications. 24. Soil properties mapping using Google Earth Engine Platform. 25. Supportive role of remote sensing techniques for landslide susceptibility modeling. 26. An overview of remotely sensed fuel variables for the prediction of wildfires. 27. Improving landslide susceptibility mapping using integration of ResU-Net technique and optimized machine learning algorithms.

  • ISBN: 978-0-443-15341-9
  • Editorial: Elsevier
  • Encuadernacion: Rústica
  • Páginas: 466
  • Fecha Publicación: 06/11/2023
  • Nº Volúmenes: 1
  • Idioma: Inglés