
Metal Sustainability: Global Challenges, Consequences, and Prospects
Izatt, Reed M.
The sustainable use of natural resources is an important global challenge, and improved metal sustainability is a crucial goal for the 21st century in order to conserve the supply of critical metals and mitigate the environmental and health issues resulting from unrecovered metals. Metal Sustainability: Global Challenges, Consequences and Prospects discusses important topics and challenges associated with sustainability in metal life cycles, from mining ore to beneficiation processes, to product manufacture, to recovery from end–of–life materials, to environmental and health concerns resulting from generated waste. The broad perspective presented highlights the global interdependence of the many stages of metal life cycles. Economic issues are emphasized and relevant environmental, health, political, industrial and societal issues are discussed. The importance of applying green chemistry principles to metal sustainability is emphasized. Topics covered include: Recycling and sustainable utilization of precious and specialty metals Formal and informal recycling from electronic and other high–tech wastes Global management of electronic wastes Metal reuse and recycling in developing countries Effects of toxic and other metal releases on the environment and human health Effect on bacteria of toxic metal release Selective recovery of platinum group metals and rare earth metals Metal sustainability from a manufacturing perspective Economic perspectives on sustainability, mineral development, and metal life cycles Closing the Loop Minerals Industry Issues The aim of this book is to improve awareness of the increasingly important role metals play in our high–tech society, the need to conserve our metal supply throughout the metal life cycle, the importance of improved metal recycling, and the effects that unhindered metal loss can have on the environment and on human health. INDICE: List of Contributors xvii .Preface xxi .Acknowledgments xxiii .1 Recycling and Sustainable Utilization of Precious and Specialty Metals 1Reed M. Izatt and Christian Hagelüken .1.1 Introduction 1 .1.2 How did we come to this Situation? 4 .1.3 Magnitude of the Waste Problem and Disposal of End–of–Life Products 7 .1.4 Benefits Derived by the Global Community from Effective Recycling 8 .1.5 Urban Mining 13 .1.6 Technologies for Metal Separations and Recovery from EOL Wastes 16 .1.7 Conclusions 19 .References 21 .2 Global Metal Reuse, and Formal and Informal Recycling from Electronic and Other High–Tech Wastes 23Ian D. Williams .2.1 Introduction 23 .2.2 Metal Sources 24 .2.3 E–waste 28 .2.4 Responses to the E–waste Problem 29 .2.5 Reuse of Metals from High–tech Sources 31 .2.6 Recycling of Metals from High–tech Sources 36 .2.7 Conclusions 46 .References 47 .3 Global Management of Electronic Wastes: Challenges Facing Developing and Economy–in–Transition Countries 52Oladele Osibanjo, Innocent C. Nnorom, Gilbert U. Adie, Mary B. Ogundiran, and Adebola A. Adeyi .3.1 Introduction 52 .3.2 E–waste Composition 56 .3.3 E–waste Generation 61 .3.4 Problems with E–waste 63 .3.5 E–waste Management Challenges Facing Developing Countries 65 .3.6 Environmental and Health Impacts of E–Waste Management in Developing Countries 71 .3.7 Solutions for Present and Future Challenges 73 .3.8 Conclusions 77 .References 78 .4 Dynamics of Metal Reuse and Recycling in Informal Sector in Developing Countries 85Mynepalli K. C. Sridhar and Taiwo B. Hammed .4.1 Introduction 85 .4.2 Science of Metals 86 .4.3 Technosphere, Demand and Mobility of Metals 89 .4.4 Waste Dumpsites and Treasures of Heavy Metals 92 .4.5 Scrap Metal and Consumer Markets 96 .4.6 Export of Metal Scrap 99 .4.7 E–waste Scavenging and End–of–Life Management 102 .4.8 Scrap Metal Theft 105 .4.9 Conclusions 106 .References 106 .5 Metal Sustainability from Global E–waste Management 109Jinhui Li and Qingbin Song .5.1 Introduction 109 .5.2 E–Waste Issues 109 .5.3 E–Waste Management in China 112 .5.4 Recycling of Metals Found in E–waste 119 .5.5 Challenges and Efforts in Metal Sustainability in China 124 .5.6 Summary 127 .5.7 Acknowledgment 130 .References 131 .6 E–waste Recycling in China: Status Quo in 2015 134Martin Streicher–Porte, Xinwen Chi, and Jianxin Yang .6.1 Introduction 134 .6.2 Formal E–waste Collection and Recycling System in China 135 .6.3 Informal E–waste Collection and Recycling 139 .6.4 Conclusions 146 .References 147 .7 Metallurgical Recovery of Metals from Waste Electrical and Electronic Equipment (WEEE) in PRC 151Xueyi Guo, Yongzhu Zhang, and Kaihua Xu .7.1 Introduction 151 .7.2 Major Sources of E–Waste in China 152 .7.3 Strategies and Regulations for WEEE Management and Treatment 153 .7.4 Recycling and Processing of WEEE 159 .7.5 Current Issues in WEEE Treatment in China 167 .7.6 Conclusions 167 .References 168 .8 Metal Pollution and Metal Sustainability in China 169Xiaoyun Jiang, Shengpei Su, and Jianfei Song .8.1 Introduction 169 .8.2 Heavy Metal Pollution in China 170 .8.3 Metal Sustainability in China 185 .8.4 Metal Sustainability in China: Future Prospects 192 .References 193 .9 Mercury Mining in China and its Environmental and Health Impacts 200Guangle Qiu, Ping Li, and Xinbin Feng .9.1 Introduction 200 .9.2 Mercury Mines and Mining 201 .9.3 Mercury in the Environment 202 .9.4 Human Exposure and Health Risk Assessment 211 .9.5 Summary 216 .References 216 .10 Effects of Non–Essential Metal Releases on the Environment and Human Health 221Peter G.C. Campbell and Jürgen Gailer .10.1 Introduction 221 .10.2 Metal Biogeochemical Cycles 222 .10.3 Metal Environmental Toxicology 226 .10.4 Case Study: Cadmium 229 .10.5 Chronic Low–Level Exposure of Human Populations to Non–Essential Metals 232 .References 243 .11 How Bacteria are Affected by Toxic Metal Release 253Mathew L. Frankel, Sean C. Booth, and Raymond J. Turner .11.1 Introduction to Bacteria in the Environment 253 .11.2 Bacterial Interactions with Metals 255 .11.3 Bacterial Response to Toxic Metals 257 .11.4 How Are Metals Toxic to Bacteria? 261 .11.5 Conclusions 265 .References 265 .12 Application of Molecular Recognition Technology to Green Chemistry: Analytical Determinations of Metals in Metallurgical, Environmental, Waste, and Radiochemical Samples 271Yoshiaki Furusho, Ismail M.M. Rahman, Hiroshi Hasegawa, and Neil E. Izatt .12.1 Introduction 271 .12.2 Technologies Used for Green Chemistry Trace Element Analysis 272 .12.3 Elemental Analysis Instrumentation 273 .12.4 Arsenic Speciation in Food Analysis 275 .12.5 Metal Separation Resins and Their Application to Elemental Analyses 275 .12.6 Green Chemistry Analytical Applications of Metal Separation Resins 279 .12.7 Conclusions 288 .References 290 .13 Ionic Liquids for Sustainable Production of Actinides and Lanthanides 295Paula Berton, Steven P. Kelley, and Robin D. Rogers .13.1 Introduction 296 .13.2 f–Element Chemistry in Ionic Liquids 297 .13.3 Applications of Ionic Liquids in f–Element Isolation 298 .13.4 Summary 308 .13.5 Acknowledgments 308 .References 309 .14 Selective Recovery of Platinum Group Metals and Rare Earth Metals from Complex Matrices Using a Green Chemistry/Molecular Recognition Technology Approach 317Steven R. Izatt, James S. McKenzie, Ronald L. Bruening, Reed M. Izatt, Neil E. Izatt, and Krzysztof E. Krakowiak .14.1 Introduction 317 .14.2 Molecular Recognition Technology 319 .14.3 Strengths of Molecular Recognition Technology in Metal Separations 320 .14.4 Applications of Molecular Recognition Technology to Separations Involving Platinum Group Metals 322 .14.5 Applications of Molecular Recognition Technology to Separations Involving Rare Earth Elements 327 .14.6 Comparison of Opex and Capex Costs for Molecular Recognition Technology and Solvent Extraction in Separation and Recovery of Rare Earth Metals 330 .14.7 Conclusions 331 .References 331 .15 Refining and Recycling Technologies for Precious Metals 333Tetsuya Ueda, Satoshi Ichiishi, Akihiko Okuda, and Koichi Matsutani .15.1 Introduction 333 .15.2 Precious Metals Supply and Demand 334 .15.3 Autocatalysts (Pt, Pd, Rh) 337 .15.4 Electronic Components 344 .15.5 Catalysts for Fuel Cell Application 349 .15.6 Extraction and Refining Technologies for Precious Metals 355 .15.7 Conclusions 359 .References 360 .16 The Precious Metals Industry: Global Challenges, Responses, and Prospects 361Michael B. Mooiman, Kathryn C. Sole, and Nicholas Dinham .16.1 Introduction: The Precious Metals Industry 361 .16.2 Current and Emerging Challenges 365 .16.3 Responding to the Challenges: Mitigating Approaches and New Developments 380 .16.4 Concluding Remarks: A Long–Term View of the Precious Metals Industry 388 .References 389 .17 Metal Sustainability from a Manufacturing Perspective: Initiatives at ASARCO LLC Amarillo Copper Refinery 397Luis G. Navarro, Tracy Morris, Weldon Read, and Krishna Parameswaran .17.1 Introduction 397 .17.2 General Overview of Sustainability from the Copper Industry Perspective 398 .17.3 A Brief History of ASARCO LLC 399 .17.4 How Refined Copper Is Produced 400 .17.5 Introduction to Physical Chemistry of Copper Electrorefining 402 .17.6 Electrolyte Purification 404 .17.7 Recovery of Metals by Precipitation from Acidic Streams 409 .17.8 Other Sustainable Development Efforts at ACR 419 .17.9 Conclusions 421 .References 422 .18 Sustainability Initiatives at ASARCO LLC: A Mining Company Perspective 424Dr. Krishna Parameswaran .18.1 Introduction 424 .18.2 What is Sustainable Mining? 425 .18.3 Exploration 427 .18.4 Innovative Reclamation Methods 436 .18.5 Reclamation of San Xavier Tailings Storage Facilities and Waste Rock Deposition Areas 441 .18.6 Fostering Renewable Energy Projects on Disturbed Lands 442 .18.7 Utilization of Mining Wastes 448 .18.8 Conclusions 450 .References 451 .19 Recycling and Dissipation of Metals: Distribution of Elements in the Metal, Slag, and Gas Phases During Metallurgical Processing 453Kenichi Nakajima, Osamu Takeda, Takahiro Miki, Kazuyo Matsubae, and Tetsuya Nagasaka .19.1 Introduction: Background, Motivation, and Objectives 453 .19.2 Method: Chemical Thermodynamic Analysis of the Distribution of Elements in the Smelting Process 454 .19.3 Element Distribution Tendencies in Recycling Metals 456 .19.4 Metallurgical Knowledge for Recycling: Element Radar Chart for Metallurgical Processing 463 .References 465 .20 Economic Perspectives on Sustainability, Mineral Development, and Metal Life Cycles 467Roderick G. Eggert .20.1 Introduction 467 .20.2 The Many Faces of Sustainability 468 .20.3 Economic Concepts 469 .20.4 Implications for Mine Development 471 .20.5 Implications for Regional and National Mineral Development 473 .20.6 Implications for Metal Life Cycles, Material Efficiency, and the Circular Economy 476 .20.7 What to Do? 481 .Acknowledgments 482 .References 483 .21 Closing the Loop: Minerals Industry Issues 485William J. Rankin and Nawshad Haque .21.1 Introduction 485 .21.2 The Waste Hierarchy 486 .21.3 Reducing and Eliminating Wastes 487 .21.3.1 Cleaner Production 490 .21.3.2 Wastes as Co–products 490 .21.3.3 Process Re–engineering 491 .21.3.4 Closing the Loop 492 .21.3.5 Stewardship 494 .21.4 Tools for Closing the Loop 497 .21.4.1 A Case Study: Steelmaking Using Biomass 497 .21.4.1.1 Economic Benefits 499 .21.4.1.2 Environmental Benefits 501 .21.4.1.3 Summary 501 .21.5 Closing the Loop: Barriers and Drivers 503 .References 505 .Index 508
- ISBN: 978-1-119-00910-8
- Editorial: Wiley–Blackwell
- Encuadernacion: Cartoné
- Páginas: 552
- Fecha Publicación: 30/09/2016
- Nº Volúmenes: 1
- Idioma: Inglés