Sustainable Agriculture under Drought Stress: Integrated Soil, Water and Nutrient Management
Etesami, Hassan
Chen, Yinglong
Sustainable Agriculture under Drought Stress: Integrated Soil, Water and Nutrient Management seamlessly blends cutting-edge research with practical applications, offering a unique perspective on tackling this urgent challenge. Through a multidisciplinary lens, this book provides a cohesive and comprehensive understanding of both the current landscape and future prospects. The escalating demand for water in arid and semiarid regions for water is straining already limited natural resources. In such conditions, optimized irrigation practices become imperative, as rain-fed agriculture often yields uncertain outcomes. Balancing this uncertainty requires efficient nutrient application alongside water management. Moreover, selecting suitable crops becomes crucial, considering their tolerance to water stress and nutritional requirements. In essence, successful crop production in drought-stressed agriculture hinges on precise fertilization and water management, coupled with a deep understanding of crop physiology. Readers are equipped with the knowledge and strategies required to manage soil nutrients and water effectively, ensuring the health of both soil and plants, especially in arid and semi-arid regions, where solutions are urgently needed. This book offers actionable insights into mitigating the impacts of climate change on agricultural systems, making it essential reading for anyone invested in sustainable land management and food security. Clarifies mechanisms and proposes solutions for enhancing soil health and fertility, irrigation management, and crop production in drought-stressed environmentsPresents a diverse array of options for responding to drought stress, optimizing plant healthExplores emerging cropping systems and opportunities INDICE: Section 1: Water scarcity, climate change and agriculture sustainability 1. Impact of climate change and drought stress on arid land agriculture 2. Growing water scarcity in agriculture: Future challenge to global water security 3. Wastewater reuse, water conservation and management in semi-arid and arid lands for sustainable agriculture 4. Strategies for deficit irrigation of crops 5. New approaches to irrigation scheduling of agronomic crops 6. A Contribution to soil fertility assessment for arid and semi-arid lands 7. Sustainable crops to cope with water scarcity and low nutritional demand 8. Sustainable fruit trees to cope with water scarcity and low nutritional demand 9. Impacts of climate change/drought stress on plant Metabolome 10. Impacts of drought on disease development and management Section 2: Linking water stress and crop nutrition 11. Problems of soil nutrient availability for crop production under drought stress 12. Effects of drought stress on soil nitrogen cycling 13. Plant growth under drought stress: Significance of mineral nutrients 14. Novel aspects of fertilization in arid and semiarid regions Section 3: Improving the soil fertility under drought conditions 15. Improving the efficiency of nutrient transfer from fertilizers under drought conditions 16. Changes of soil microbial, physical and chemical characteristics under drought stress 17. The impact of drought stress on soil microbial community, enzyme activities and microbial diversity 18. Drought stress and root-Associated bacterial communities 19. Drought stress and root-Associated fungal communities 20. Dynamics of soil fertility management practices in arid and semi-arid regions 21. Soil fertility management for cereal crops in semi-arid and arid conditions 22. Improving soil fertility and moisture in arid and semi-arid regions using organic amendments Section 4: Positive Interactions between crops and soil microorganisms to enhance the drought tolerance 23. Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria 24. Reclamation of arid and semi-arid soils: The role of arbuscular mycorrhizal fungi 25. Improved soil water retention and reduced evaporation in drought-stressed agriculture by soil beneficial microbes 26. Rhizosphere engineering for managing agriculture in arid and semi-arid regions Section 5: Crop physiological and yield responses to water stress 27. Effect of soil drought on plant root systems and nutrient availability 28. Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms 29. Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere 30. Water management in irrigated rice: coping with water scarcity
- ISBN: 978-0-443-23956-4
- Editorial: Academic Press
- Encuadernacion: Rústica
- Páginas: 500
- Fecha Publicación: 01/10/2024
- Nº Volúmenes: 1
- Idioma: Inglés