Recommendations on Piling

This handbook provides a complete overview of pile systems and their application and production. It shows their analysis based on the new safety concept providing numerous examples for single piles, pile grids, and groups. These recommendations are considered rules of engineering. The book will be of use to civil engineers, test engineers, and engineering consultants, as well as public authorities, company libraries, and libraries at universities and institutes. INDICE: Members of the AK 2.1 Piling Committee of the German Geotechnical Society V Preface of the English Version of the Recommendations of the Piling Committee of the German Geotechnical Society VII Preface of the 2nd German edition   IX 1 Introduction to the Recommendations and their Application Principles    1 1.1 National and International Regulations for Piling Works    1 1.2 Types of Analysis and Limit States using the Partial Safety Factor Approach   2 1.2.1 New standards generation and their application to pile foundations   2 1.2.2 Actions, effects and resistances 3 1.2.3 Limit states and national application of the EC 7–1 German Handbook 4 1.2.4 Transitional regulations for applying of the Recommendations on Piling in conjunction with the EC 7–1 German Handbook   7 1.3 Planning and Testing Pile Foundations  7 2 Pile Systems 9 2.1 Overview and Classification into Pile Systems  9 2.2 Pile Construction 12 2.2.1 Bored piles      12 2.2.1.1 Cased bored piles 12 2.2.1.2 Unsupported excavations 14 2.2.1.3 Fluid–supported excavations  14 2.2.1.4 Soil–supported, continuous flight auger bored piles 15 2.2.1.5 Soil–supported, partial flight auger bored piles  16 2.2.1.6 Bored piles with enlarged bases     16 2.2.1.7 Diaphragm wall elements/barettes    17 2.2.2 Prefabricated driven piles 17 2.2.2.1 Introduction     17 2.2.2.2 Precast driven concrete piles  18 2.2.2.3 Prefabricated driven steel and cast–iron piles   18 2.2.2.4 Prefabricated driven timber piles 19 2.2.3 Cast–in–place concrete piles 20 2.2.3.1 Cast–in–place concrete piles with internal driving tube (Franki pile)  20 2.2.3.2 Cast–in–place top–driven piles (e.g. Simplex piles)    20 2.2.4 Screw piles (full displacement bored piles) 21 2.2.4.1 Introduction     21 2.2.4.2 Atlas piles   22 2.2.4.3 Fundex piles  22 2.2.5 Grouted displacement piles 23 2.2.5.1 Pressure–grouted piles    23 2.2.5.2 Vibro–injection piles  23 2.2.6 Micropiles   24 2.2.7 Tubular grouted piles     24 2.3 Foundation elements similar to piles   25 3 Pile Foundation Design and Analysis Principles   27 3.1 Pile Foundation Systems27 3.1.1 Single pile solutions  27 3.1.2 Pile grillages  28 3.1.3 Pile groups      29 3.1.4 Piled raft foundations     30 3.2 Geotechnical Investigations for Pile Foundations 32 3.3 Classification of Soils for Pile Foundations 39 3.4 Pile Systems for the Execution of Excavations and for Retaining Structures  40 3.4.1 General    40 3.4.2 Pile configurations  41 3.4.3 Pile systems and special execution requirements    41 3.4.4 Design 42 3.4.5 Reinforcement 42 3.4.6 Concrete       42 3.4.7 Impermeability of bored pile walls   42 3.5 Piles for the Stabilisation of Slopes       43 3.6 Use of sacrificial Linings 44 4 Actions and Effects  47 4.1 Introduction     47 4.2 Pile Foundation Loads Imposed by the Structure 48 4.3 Installation Effects on Piles 48 4.4 Negative Skin Friction 49 4.4.1 Introduction     49 4.4.2 Determination of the characteristic action from negative skin friction   50 4.4.3 Determination of the design values of actions or effects and method of verification   53 4.4.4 Skin friction as a result of heave in the vicinity of the pile    53 4.5 Lateral Pressure    54 4.5.1 Introduction     54 4.5.2 Necessity for design of piles for lateral pressure     55 4.5.3 Determination of the characteristic action from flow pressure 57 4.5.4 Determination of the characteristic action from the resulting earth pressure    58 4.5.5 Influences of distance and minimummoments  61 4.5.6 Effects on piles 62 4.6 Additional Effects on Raking Piles Resulting from Ground Deformations 62 4.6.1 Introduction     62 4.6.2 Surcharges resulting from anchoring steel and micropiles 63 4.7 Foundation Piles in Slopes and at Retaining Structures  65 4.7.1 Foundation piles in slopes   65 4.7.2 Foundation piles at retaining structures  67 5 Bearing Capacity and Resistances of Single Piles 69 5.1 General    69 5.2 Determining Pile Resistances from Static Pile Load Tests 70 5.2.1 General    70 5.2.2 Characteristic pile resistances in the ultimate limit state     71 5.2.3 Characteristic pile resistances in the serviceability limit state  72 5.3 Determining Pile Resistances from Dynamic Pile Load Tests 72 5.4 Axial Pile Resistances Based on Empirical Data     75 5.4.1 General    75 5.4.2 Guidance for the application  76 5.4.3 Application principles and limitations of tabled data   77 5.4.4 Prefabricated driven piles 79 5.4.4.1 General    79 5.4.4.2 Empirical values of base resistance and skin friction of prefabricated driven piles  82 5.4.4.3 Empirical data on the bearing capacity of open–ended steel tubes and hollow boxes 84 5.4.4.4 Experience with prefabricated piles in rock and very dense or cemented soils 85 5.4.5 Cast–in–place concrete piles 86 5.4.5.1 General    86 5.4.5.2 Empirical values of base resistance and skin friction of Simplex piles    87 5.4.5.3 Empirical values of base resistance and skin friction of Franki piles    88 5.4.6 Bored piles      96 5.4.6.1 General    96 5.4.6.2 Empirical values of base resistance and skin friction of bored piles     98 5.4.6.3 Empirical data for base resistance and skin friction of piles in rock and cemented soils   100 5.4.6.4 Diaphragm wall elements (barettes)       103 5.4.6.5 Bored pile walls and diaphragm walls      104 5.4.7 Partial displacement piles 104 5.4.8 Screw piles      105 5.4.8.1 General    105 5.4.8.2 Empirical values of base resistance and skin friction of screw piles     106 5.4.9 Grouted displacement piles and micropiles   108 5.4.9.1 General    108 5.4.9.2 Empirical values of skin friction of pressure–grouted piles    109 5.4.9.3 Empirical values of skin friction of vibro–injection piles     110 5.4.9.4 Empirical values of skin friction of grouted micropiles  110 5.4.9.5 Empirical values of skin friction in tubular grouted piles    111 5.4.9.6 Bond stress in grouted displacement piles 112 5.4.10 Applying the empirical data to tension piles 112 5.5 Bored Piles with Enlarged Bases 113 5.6 Additional Methods Using the EC 7–1 and EC 7–2 Handbooks  114 5.7 Pile Resistances for Grouted Shafts and Bases     114 5.8 Resistances of Piles Under Lateral Loads 115 5.9 Pile Resistances Under Dynamic Actions 116 5.10 Internal Pile Capacity     116 5.10.1 General    116 5.10.2 Allowable cross–section stresses     117 5.10.3 Resistance of piles against buckling failure in soil strata with low lateral support, and buckling analysis  118 5.11 Numerical Analyses of the Capacity of Single Piles 119 6 Stability Analyses  121 6.1 Introduction     121 6.2 Limit State Equations     121 6.3 Bearing Capacity Analysis  122 6.3.1 Axially loaded piles     122 6.3.2 Laterally loaded piles     123 6.3.3 Structural failure in piles125 6.4 Serviceability Analysies    125 6.4.1 Axially loaded piles     125 6.4.2 Laterally loaded piles     127 6.5 Pile Groups and Grillages 127 6.6 Piled Raft Foundations 127 7 Grillage Analysis   129 7.1 Analysis Models and Procedures 129 7.2 Non–linear Pile Bearing Behaviour in Grillage Analysis     130 8 Analysis and Verification of Pile Groups 131 8.1 Actions and Effects      131 8.1.1 Compression pile groups 131 8.1.2 Tension pile groups      131 8.1.3 Laterally loaded pile groups 133 8.2 Bearing Capacity and Resistances of Pile Groups 133 8.2.1 Compression pile groups 133 8.2.1.1 Introduction     133 8.2.1.2 Group effect in terms of the settlements of bored pile groups   134 8.2.1.3 Resistances in (bored) group piles    141 8.2.1.4 Displacement pile groups 146 8.2.1.5 Micropile groups 147 8.2.1.6 Layered ground    147 8.2.2 Tension pile groups      148 8.2.3 Laterally loaded groups    148 8.3 Bearing Capacity Analyses 152 8.3.1 Compression pile groups 152 8.3.1.1 External capacity 152 8.3.1.2 Structural analyses of the pile capping slab 153 8.3.2 Tension pile groups      154 8.3.2.1 Introduction     154 8.3.2.2 Analysis of the attached soil block in the UPL limit state 154 8.3.2.3 Analysis of the capacity of a single tension pile in the GEO–2 limit state    155 8.3.3 Structural failure of group piles and pile cap structures  155 8.4 Serviceability Analyses    156 8.4.1 Compression pile groups 156 8.4.2 Tension pile groups      157 8.4.3 Laterally loaded pile groups 157 8.5 Higher Accuracy Pile Group Analyses  157 9 Static Pile Load Tests 159 9.1 Introduction     159 9.2 Static Axial Pile Load Tests 159 9.2.1 Installation of test piles 159 9.2.2 Test planning     160 9.2.2.1 General notes     160 9.2.2.2 Number of test piles  161 9.2.2.3 Test load       162 9.2.2.4 Principles for the instrumentation 164 9.2.2.5 Special load situations    164 9.2.3 Loading systems   165 9.2.3.1 Introduction     165 9.2.3.2 Reaction systems 165 9.2.3.3 Hydraulic jacks 167 9.2.3.4 Embedded hydraulic jacks   168 9.2.3.5 Pile head       169 9.2.4 Instrumentation and monitoring     170 9.2.4.1 Displacement measurements  170 9.2.4.2 Load measurement at the pile head   171 9.2.4.3 Pile base resistance      171 9.2.4.3 Pile shaft resistance      172 9.2.4.5 Special instrumentation for tests with embedded hydraulic jacks 174 9.2.4.6 Pile cross–sectional area and deformation properties   174 9.2.4.7 Protection of monitoring instruments  174 9.2.5 Testing procedure   175 9.2.5.1 Load steps and loading rates  175 9.2.5.2 Monitoring intervals  177 9.2.5.3 Records    178 9.2.6 Evaluation   178 9.2.7 Documentation and reports 181 9.2.7.1 Introduction     181 9.2.7.2 Test report   181 9.2.7.3 Interpretative report      182 9.3 Static Lateral Load Test    182 9.3.1 Introduction     182 9.3.2 Installation of test piles 183 9.3.3 Test planning     183 9.3.3.1 General notes     183 9.3.3.2 Number of test piles  184 9.3.3.3 Test load       185 9.3.3.4 Ground investigations     185 9.3.3.5 Principles for the instrumentation 185 9.3.3.6 Load situations 185 9.3.4 Loading systems   186 9.3.5 Instrumentation and monitoring     187 9.3.5.1 Deflection measurement at the pile head    187 9.3.5.2 Monitoring of the deflection curve    189 9.3.5.3 Load measurement at the pile head   189 9.3.5.4 Protection of monitoring instruments  189 9.3.6 Testing procedure   189 9.3.6.1 Load steps and loading rates  189 9.3.6.2 Monitoring intervals  191 9.3.6.3 Records    191 9.3.7 Evaluation   192 9.3.8 Documentation and reports 192 9.3.8.1 Introduction     192 9.3.8.2 Test report   192 9.3.8.2 Interpretative report      194 9.4 Static Axial Load Tests on Micropiles (Composite Piles) 194 9.4.1 Installation of test piles 194 9.4.2 Test planning     195 9.4.2.1 General notes     195 9.4.2.2 Number of test piles  196 9.4.2.3 Test load       196 9.4.2.4 Principles for the instrumentation 197 9.4.2.5 Special loading situations 197 9.4.3 Loading systems   198 9.4.3.1 Reaction systems 198 9.4.3.2 Hydraulic jacks 199 9.4.3.3 Pile head       199 9.4.4 Instrumentation and monitoring     200 9.4.4.1 Displacement measurement 200 9.4.4.2 Load measurement at the pile head   200 9.4.4.3 Pile shaft resistance      200 9.4.4.4 Protection of monitoring instruments  201 9.4.5 Testing procedure   201 9.4.5.1 Introduction     201 9.4.5.2 Load steps and loading rates for System A   201 9.4.5.3 Load steps for System B   203 9.4.5.4 Monitoring intervals  204 9.4.5.5 Records    204 9.4.6 Evaluation   205 9.4.7 Documentation and reports 207 9.4.7.1 Introduction     207 9.4.7.2 Test report   207 9.4.7.3 Interpretative report      208 10 Dynamic pile load tests   209 10.1 Introduction     209 10.2 Range of Application and General Conditions      209 10.3 Theoretical Principles     210 10.4 Description of Testing Methods, Test Planning and Execution 213 10.4.1 Evaluation methods and type of load testing   213 10.4.2 Number of load tests  214 10.4.3 Ground investigations and pile installation documentation    214 10.4.4 Time of testing and internal capacity   214 10.4.5 Dynamic load testing using the high–strain method   215 10.4.5.1 Brief description   215 10.4.5.2 Loading system    215 10.4.5.3 Instrumentation    217 10.4.5.4 Performing the test  219 10.4.6 Dynamic load testing using the rapid load method    221 10.4.6.1 Brief description   221 10.4.6.2 Testing types and timing   221 10.4.6.3 Loading system    222 10.4.6.4 Instrumentation    223 10.4.6.5 Testing procedure   224 10.5 Evaluation and Interpretation of Dynamic Load Tests 225 10.5.1 Introduction     225 10.5.2 Direct methods using empirical damping values     225 10.5.2.1 Fundamentals     225 10.5.2.2 CASE method    226 10.5.2.3 TNO method 227 10.5.3 Direct method for evaluating a rapid load test using the unloading point method 228 10.5.4 Extended method with complete modelling 229 10.6 Calibrating Dynamic Pile Load Tests      231 10.7 Qualifications of Testing Institutes and Personnel 234 10.8 Documentation and Reporting     234 10.9 Testing Driving Rig Suitability  236 11 Quality Assurance during Pile Execution 239 11.1 Introduction     239 11.2 Bored Piles      239 11.2.1 Principles      239 11.2.2 Support to boreholes  240 11.2.2.1 Cased boreholes    240 11.2.2.2 Excavations supported by fluids     241 11.2.2.3 Soil–supported boring with continuous flight augers 242 11.2.3 Excavation  242 11.2.3.1 Introduction     242 11.2.3.2 Boring below the groundwater table   242 11.2.3.3 Drilling tool diameter and speed of operation      243 11.2.3.4 Cleaning the base of the borehole 244 11.2.3.5 Enlarged bases 245 11.2.4 Installation of reinforcement  245 11.2.5 Concreting  247 11.2.5.1 Concrete mix    247 11.2.5.2 Concreting procedure     248 11.2.6 Bored piles constructed with continuous flight augers 250 11.2.6.1 Introduction     250 11.2.6.2 Soil–supported auger boring 250 11.2.6.3 Cased flight auger boring 251 11.2.6.4 Concreting and installation of reinforcement   251 11.2.7 Shaft and base grouting 252 11.3 Displacement Piles      253 11.3.1 Prefabricated concrete piles – Guidance for transport, storage and installation 253 11.3.2 Cast in place concrete displacement piles 254 11.3.2.1 Water/soil ingress into the drive tube  254 11.3.2.2 Concreting  254 11.3.3 Displacement effect in cohesive soils      254 11.4 Grouted Micropiles (Composite Piles)     255 11.4.1 Introduction     255 11.4.2 Grouted monobar piles 255 11.4.3 Tubular grouted piles     256 11.4.4 Testing grouted micropiles  257 12 Pile Integrity Testing 259 12.1 Purpose and Procedures    259 12.2 Low Strain Integrity Tests   260 12.2.1 Low strain integrity test principles    260 12.2.2 Scope, number of tested piles and limitations  261 12.2.3 Pile preparation    262 12.2.4 Testing procedure   262 12.2.5 Measurement and instrumentation    263 12.2.6 Evaluation of measurements  263 12.2.7 Impedance and wave velocity      266 12.2.8 Assessment classes      268 12.2.9 Documentation and reporting      269 12.3 Ultrasonic Integrity Testing 270 12.3.1 Objective and scope     270 12.3.2 Ultrasonic integrity testing principles      270 12.3.3 Measurement     272 12.3.4 Test preparation and testing procedure  274 12.3.4.1 Test piles       274 12.3.4.2 Testing procedure   275 12.3.5 Evaluation   275 12.3.5.1 Qualitative signal evaluation  275 12.3.5.2 Quantitative signal analysis 277 12.3.5.3 Pile evaluation 278 12.3.6 Documentation and report   278 12.3.7 Special situations: testing secant pile walls and diaphragm walls 279 12.4 Testing Piles by Core Drilling     279 12.4.1 Introduction     279 12.4.2 Coring 280 12.4.3 Analysis    280 12.4.3.1 Introduction     280 12.4.3.2 Visual evaluation 281 12.4.4 Concrete strength and durability     281 12.4.5 Downhole tests 282 12.5 Other Specific Testing Methods     282 12.5.1 Introduction     282 12.5.2 Radiometric pile tests     282 12.5.3 Multi–channel low strain testing     282 12.5.4 Parallel seismic method    283 12.5.5 Induction and mise–a–la–masse methods     284 12.5.6 Other borehole–based methods  284 13 Bearing Capacity and Analyses of Piles under Cyclic, Dynamic and Impact Actions  285 13.1 Introduction     285 13.2 Cyclic, Dynamic and Impact Actions  286 13.2.1 Action and loading types 286 13.2.2 Actions from cyclic loads 287 13.2.3 Actions from dynamic loads  290 13.2.4 Actions from impact loads   291 13.3 Supplementary Geotechnical Investigations 292 13.4 Bearing Behaviour and Resistances under Cyclic Loads     294 13.4.1 Introduction     294 13.4.2 Axial loads      294 13.4.3 Lateral loads  297 13.5 Bearing Behaviour and Resistances under Dynamic Loads    299 13.6 Bearing Behaviour and Resistances under Impact Loads    300 13.6.1 Introduction     300 13.6.2 Axial loads      300 13.6.3 Lateral loads  300 13.7 Stability Analyses of Cyclic, Axially Loaded Piles   301 13.7.1 Analysis of the bearing capacity of an isolated pile   301 13.7.2 Analysis of the serviceability of a single pile   304 13.8 Stability Analyses of Cyclical, Laterally Loaded Piles 304 13.8.1 Analysis of the bearing capacity of a single pile     304 13.8.2 Analysis of the serviceability of a single pile   305 13.9 Stability Analyses of Dynamic or Impact–loaded Piles 306 Annex A Terms, Partial Safety Factors and Principles for Analysis 307 A1 Definitions and notations 307 A2 Partial safety factors γF and γE for actions and effects from EC 7–1 Handbook [44], Table A 2.1 312 A3 Partial Safety Factors for Geotechnical Parameters and Resistances from EC 7–1 Handbook [44], Tables A 2.2 and A 2.3 314 A3.1 Partial safety factors γM for geotechnical parameters   314 A3.2 Partial safety factors γR for resistances  315 A4 Correlation Factors ξi for Determining the Characteristic Pile Resistances for the Ultimate Limit State Acquired from Tested or Measured Data of Static and Dynamic Pile Tests acc to the EC 7–1 Handbook    316 A4.1 Correlation factors from static pile tests     316 A4.1 Correlation factors from dynamic pile tests 317 A5 Procedure for Determining the Resistance of Piles Against Buckling Failure in Soil Strata with Low Lateral Support (informative)     320 A5.1 Guidance notes 320 A5.2 Ground support 320 A5.3 Static system and equilibrium conditions using second–order theory (inclusion of lateral deflections)   322 A5.4 Requirements for the application of the analysis method     324 A5.5 Determining the characteristic resistance against pile buckling 325 A6 Bonding Stress in Grouted Displacement Piles (informative)   328 A6.1 Guidance notes 328 A6.2 Characteristic and design values of bonding stresses   328 Annex B Example Calculations for Pile Resistance Analysis and Verifications       331 B1 Determining the Axial Pile Resistances from Static Pile Load Tests, and Ultimate and Serviceability Limit State Analyses     331 B1.1 Objectives   331 B1.2 Deriving the characteristic pile resistances in the ultimate and serviceability limit states 332 B1.3 Bearing capacity analysis 334 B1.4 Serviceability analysis 334 B2 Characteristic Axial Pile Resistances from Dynamic Load Tests   336 B2.1 Objective       336 B2.2 Characteristic pile resistances      336 B3 Determining the Characteristic Axial Pile Resistances from Empirical Data for a Bored Pile      338 B3.1 Objective       338 B3.2 Analysis for lower and upper table values 338 B3.2.1 Determining the pile shaft resistance Rs,k 339 B3.2.2 Determining the pile base resistance Rb,k    339 B3.2.3 Characteristic resistance–settlement curve 340 B4 Determining the Characteristic Axial Pile Resistances from Empirical Data for a Prefabricated Driven Pile   341 B4.1 Objective       341 B4.2 Characteristic axial pile resistance from empirical data for lower and upper table values     341 B4.2.1 Determining the pile shaft resistance Rs,k 342 B4.2.2 Determining the pile base resistance Rb,k    342 B4.2.3 Characteristic resistance–settlement curve 343 B5 Determining the Characteristic Axial Pile Resistances from Empirical Data for a Fundex Pile  345 B5.1 Objective       345 B5.2 Characteristic axial pile resistance from empirical lower and upper table values    345 B5.2.1 Determining the pile shaft resistance Rs,k 345 B5.2.2 Determining the pile base resistance Rb,k    346 B5.2.3 Characteristic resistance–settlement curve 346 B6 Principle of the Evaluation of a Static Pile Load Test Using a Prefabricated Driven Pile shown on an Example and Comparison with Empirical Data after 5.4.4.2    348 B6.1 Objective       348 B6.2 Characteristic axial pile resistance from empirical lower and upper table values    349 B6.2.1 Determining the pile shaft resistance Rs,k 349 B6.2.2 Determining the pile base resistance Rb,k    350 B6.2.3 Characteristic resistance–settlement curve for empirical data compared to tested or measured values 350 B6.3 Characteristic axial pile resistance from static load tests     351 B6.4 Design values of pile resistances in the ultimate limit state    352 B7 Preliminary Design and Analysis of the Ultimate Limit State of Franki Piles Based on Empirical Data and Comparison to a Pile Load Test Result 354 B7.1 Objective       354 B7.2 Determining the base volume from empirical data    355 B7.2.1 Determining the pile shaft resistance Rs,k 355 B7.2.2 Determining the pile base volume of a Franki pile    356 B7.3 Analysis of the ultimate limit state (ULS, GEO–2) by means of the driving energy expended during pile installation  356 B7.3.1 Characteristic pile resistance Rc,k after applying the lower empirical values   356 B7.3.2 Characteristic pile resistance Rc,k after applying the upper empirical values   357 B7.3.3 Ultimate limit state analysis 358 B7.4 Comparison of the axial pile resistance based on empirical data with static load tests     358 B7.4.1 Characteristic axial pile resistance from empirical data  358 B7.4.2 Comparing to the static load test     359 B8 Negative Skin Friction for a Displacement Pile as a Result of Fill 360 B8.1 Objective       360 B8.2 Determining the characteristic resistance–settlement curve    361 B8.3 Determining the characteristic actions Fn,k from negative skin friction   362 B8.4 Bearing capacity analysis 364 B8.5 Serviceability analysis 364 B8.6 Analysis of internal capacity (structural failure)     365 B9 Determining the Effect on a Laterally Loaded Pile (Perpendicular to the Pile Axis) and Analysis of Structural Failure     366 B9.1 Objective       366 B9.2 Determining the characteristic action effects and stresses 367 B9.3 Design values of the action effects    370 B9.4 Minimum strength class of concrete and concrete cover     371 B9.5 Design values of materials   372 B9.6 Ultimate limit state design   372 B9.6.1 Design for bending and normal force  372 B9.6.2 Design for shear force to DIN 1045–1      373 B9.6.3 Design for shear force after [5]  377 B9.6.4 Minimum reinforcement for shear force to DIN 1045–1 378 B10 Laterally Loaded Piles 380 B10.1 Objective and systems    380 B10.2 Determining the characteristic actions and effects 381 B11 Pillar Foundation on 9 Piles – Ultimate and Serviceability Limit State Analyses Taking the Group Effect into Consideration   383 B11.1 Objective and system     383 B12 Tension Pile Group Analyses in the Ultimate Limit State 389 B12.1 Objective       389 B12.2 Isolated pile analysis  389 B12.3 Analysis of the pile group effect (attached soil monolith) 390 B13 Laterally Loaded Pile Groups: Determining the Distribution of Horizontal Subgrade Moduli 392 Annex C Examples of Dynamic Pile Load Testing and Integrity Testing 395 C 1 Dynamic Pile Load Test Evaluation: Example using the Direct Method    395 C 1.1 Objectives and test data    395 C 1.2 Case method  396 C1.3 TNO method 396 C2 Dynamic Pile Load Test Evaluation Example Using the Extended Method with Complete Modelling     397 C2.1 Objectives and test data    397 C3 Rapid Load Tests Evaluation Example Using the Unloading Point Method  401 C4 Low Strain Integrity Test Case Studies  404 C4.1 Example: pile in accordance with specification – Class A1    404 C4.2 Example: pile in accordance with specification – Class A2    404 C4.3 Example: pile with minor deviations – Class A3    405 C4.4 Example: pile with substantial impedance reduction – Class B 406 C4.5 Example: measurement can not be–evaluated – Class 0  407 C5 Integrity Tests during Driving and/or High Strain Integrity Tests   408 C5.1 Introduction     408 C5.2 Example: pile in accordance with the specification   409 C5.3 Example: defective pile    409 C5.4 Example: coupled pile    410 C6 Example: Ultrasonic Integrity Testing      411 Annex D Analysis Methods and Examples for Cyclically Loaded Piles (Informative)  417 D1 Guidance notes 417 D2 Piles Subjected to Cyclic Axial Loads      418 D2.1 Analysis methods 418 D2.1.1 Pile resistance in the ultimate limit state based on interaction diagrams       418 D2.1.2 Displacement accumulation using an empirical approach 420 D2.1.3 Approximation methods for calculating pile bearing behaviour under cyclic loads after [66]  420 D2.1.4 Approximation method for analysing pile bearing behaviour under cyclic loads after [142]     423 D2.2 Calculation examples     428 D2.2.1 Ultimate limit state analysis based on interaction diagrams after D2.1.1      428 D2.2.2 Serviceability limit state analysis with an empirical displacement approach after D2.1.2       429 D2.2.3 Calculation example for the ultimate and the serviceability limit states using the method after D.2.1.3   430 D2.2.4 Calculation example for the ultimate and the serviceability limit states using the method after D.2.1.4   435 D3 Piles Subjected to Cyclic Lateral Loads     440 D3.1 Calculation methods  440 D3.1.1 Empirical method for estimating the accumulated deflections 440 D3.1.2 Calculation approaches for estimating deflection accumulation taking to consideration non–linear soil behaviour 441 D3.1.3 Calculation approach with subgrade reaction reduction using the p–y method 441 D3.2 Examples       443 D3.2.1 Estimating deflection accumulation after D3.1.1    443 D3.2.2 Estimating deflection accumulation after D3.1.2    445 D3.2.3 Subgrade degradation adopting the p–y method after D3.1.3   450 D4 Procedure for determining an equivalent single–stage load spectrum     454 D4.1 Calculation method      454 D4.1.1 Method for determining an equivalent load cycle number for piles subjected to cyclic axial loads  454 D4.1.2 Method for determining an equivalent load cycle number for piles subjected to cyclic lateral loads     454 D4.2 Calculation examples     456 D4.2.1 Determining an equivalent load cycle number for piles subjected to cyclic axial loads after D4.1    456 D4.2.2 Determining an equivalent load cycle number for piles subjected to cyclic lateral loads after D4.1 457 Literatur    459 List of Advertisers   469

  • ISBN: 978-3-433-03018-9
  • Editorial: Wiley VCH
  • Encuadernacion: Cartoné
  • Páginas: 480
  • Fecha Publicación: 13/11/2013
  • Nº Volúmenes: 1
  • Idioma: Inglés