Air Dispersion Modeling

Air Dispersion Modeling

De Visscher, Alex

104,21 €(IVA inc.)

Air dispersion models are used by many industries for the design of effective control strategies to reduce emissions of harmful air pollutants. Providing the underlying science for formulating air dispersion models, this innovate text introduces the fundamentals, discusses implementation issues of air dispersion models, and provides a detailed description of the most widely used air dispersion models. Air Dispersion Modeling provides researchers, professionals, and graduate students with all the background information they need to use air dispersion models with confidence. INDICE: Preface xv List of Symbols xix Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Types of Air Dispersion Models 4 1.2.1 Gaussian Plume Models 4 1.2.2 Gaussian Puff Models 5 1.2.3 Stochastic Lagrangian Particle Models 5 1.2.4 Eulerian Advection and Dispersion Models 5 1.2.5 Computational Fluid Dynamics 6 1.3 Standard Conditions for Temperature and Pressure 6 1.4 Concentration Units in the Gas Phase 7 1.5 Units 9 1.6 Constants and Approximately Constant Variables 11 1.7 Frequently Used Greek Symbols 12 Problems 12 References 12 Chapter 2 An Air Dispersion Modeling Primer 14 2.1 Introduction 14 2.2 Basic Concepts of Air Dispersion 15 2.3 Gaussian Dispersion Model 17 2.3.1 Assumptions Underlying the Gaussian Plume Concept 17 2.3.2 Quantitative Description 18 2.3.3 Refinements 26 2.4 Plume Rise 30 2.4.1 Plume Rise Correlations 30 2.4.2 Critical Wind Speed 32 2.4.3 Rules of Thumb 33 2.5 Need for Refinements to the Basic Gaussian Plume Dispersion Model 34 Problems 34 Materials Online 36 References 36 Chapter 3 Air Pollutants: An Overview 37 3.1 Introduction 37 3.2 Types of Air Pollution 37 3.2.1 Sulfur Compounds 38 3.2.2 Nitrogen Compounds 39 3.2.3 Volatile Organic Compounds 40 3.2.4 Inorganic Carbon 41 3.2.5 Ozone 42 3.2.6 Particulate Matter 44 3.2.7 Metals 45 3.2.8 Air Pollution and Health 45 3.2.9 Global Warming 46 3.2.10 Air Pollution and Visibility 49 3.2.11 Odor Nuisance 50 Problems 51 References 52 Chapter 4 Regulation of Air Quality and Air Quality Modeling 54 4.1 Introduction 54 4.2 Air Quality Regulation 54 4.3 Air Dispersion Modeling Guidelines 59 References 59 Chapter 5 Meteorology for Air Dispersion Modelers 60 5.1 Introduction 60 5.2 Structure of the Atmosphere 61 5.3 Altitude Dependence of Barometric Pressure 62 5.4 Height Dependence of Temperature—Adiabatic Case 65 5.4.1 Adiabatic Lapse Rate 65 5.4.2 Potential Temperature 68 5.5 Stability 70 5.5.1 General Description of Stability 70 5.5.2 Stability Parameter 72 5.5.3 Diurnal Cycle of Stability 75 5.6 Heat Balance 76 5.7 Wind Speed Profile 81 5.7.1 Case 1: Smooth Surface, Adiabatic Conditions 81 5.7.2 Case 2: Rough Surface, Adiabatic Conditions 83 5.7.3 Case 3: Rough Surface, Nonneutral Conditions 86 5.8 Temperature Profile Revisited: Nonneutral Conditions 93 5.9 Heat Balance Revisited: Stable Conditions 97 5.10 Mixing Layer Height 99 5.11 Concept of Turbulence 103 5.11.1 Basic Properties of Turbulence 103 5.11.2 Measures of Turbulence 105 5.11.3 Similarity Theory and Turbulence 107 5.11.4 Covariance and Turbulence 110 5.11.5 Introduction to Eddy Diffusivity and Gradient Transport Theory 113 5.12 Special Topics in Meteorology 119 5.12.1 Convective Cycles: Qualitative Description 119 5.12.2 Internal Boundary Layer: Qualitative Description 120 5.12.3 Plume Shapes 121 5.12.4 Virtual Temperature 122 5.13 Advanced Topics in Meteorology 122 5.13.1 Convective Cycles: Quantitative Description 123 5.13.2 Simple Convective Boundary Layer Model 126 5.13.3 Internal Boundary Layer: Quantitative Description 129 5.13.4 Effect of Complex Terrain in Meteorology 130 5.14 Summary of Main Equations 134 Problems 137 Materials Online 138 References 139 Chapter 6 Gaussian Dispersion Modeling: An In–Depth Study 141 6.1 Introduction 141 6.2 Gaussian Plume Models 142 6.3 Parameterizations Based on Stability Classes 145 6.4 Gaussian Plume Dispersion Short Cut 148 6.5 Plume Dispersion Modifiers 150 6.6 Continuous Parameterization for Gaussian Dispersion Models 153 6.6.1 Introduction: From Turbulence to Dispersion 153 6.6.2 Autocorrelation of Wind Speed 154 6.6.3 Taylor’s Hypothesis 155 6.6.4 Lagrangian Frame of Reference 156 6.6.5 Practical Schemes for Continuous Parameterizations 159 6.6.6 Dispersion Parameters Based on the Autocorrelation Function 164 6.6.7 More Ti,L Relationships 168 6.7 Gaussian Plume Models for Nonpoint Sources 172 6.8 Virtual Source Concept 174 6.9 Special Issues 175 6.9.1 Probability Density Functions for Plumes in Convective Boundary Layers 175 6.9.2 Emission from a Ground–Level Source 176 6.10 Gaussian Puff Modeling 180 6.10.1 Introduction 180 6.10.2 Puff Models 181 6.10.3 Stochastic Puff Models: Parameterization for Instantaneous Puffs 185 6.11 Advanced Topics in Meteorology 187 6.11.1 Spectral Properties of Turbulence 187 6.11.2 Turbulent Energy Dissipation: Kolmogorov Theory 188 6.12 Summary of the Main Equations 193 Problems 195 Materials Online 197 References 197 Chapter 7 Plume–Atmosphere Interactions 201 7.1 Introduction 201 7.2 Plume Rise 201 7.2.1 Introduction 201 7.2.2 Plume Rise Theory 202 7.2.3 Flare Plume Rise 208 7.2.4 Numerical Plume Rise Calculations 210 7.3 Plume Downwash: PRIME (Plume RIse Model Enhancements) 215 7.3.1 Introduction 215 7.3.2 Wake Size Calculations 216 7.3.3 Streamline Deflection Calculation 219 7.3.4 Plume–Wake Interaction Calculation 221 7.4 Behavior of Denser–than–Air Plumes 225 7.5 Deposition 234 7.5.1 Dry Deposition 234 7.5.2 Wet Deposition 265 7.5.3 Gaussian Dispersion Models with Deposition 277 7.6 Summary of the Main Equations 288 Problems 291 Materials Online 292 References 292 Chapter 8 Gaussian Model Approaches in Urban or Industrial Terrain 296 8.1 Introduction 296 8.2 Wind Flow around Obstacles 297 8.3 Surface Roughness and Displacement Height in Urban and Industrial Terrain 298 8.3.1 Introduction 298 8.3.2 Determination of z0 and d 300 8.4 Wind Speed Profiles near the Surface: Deviations from Similarity Theory 303 8.4.1 Theoretical Background 303 8.4.2 Simple Approach 305 8.4.3 Exponential Wind Speed Profile 305 8.4.4 Junction Methods 307 8.4.5 Other Canopy Wind Speed Descriptions 309 8.5 Turbulence in Urban Terrain 314 8.6 Dispersion Calculations in Urban Terrain near the Surface 317 8.6.1 Introduction 317 8.6.2 Gaussian Model Formulation near the Surface 317 8.6.3 Near Surface Dispersion Parameter Calculation Schemes 318 8.7 An Example 320 8.8 Summary of the Main Equations 324 Problems 326 Materials Online 327 References 327 Chapter 9 Stochastic Modeling Approaches 329 9.1 Introduction 329 9.2 Fundamentals of Stochastic Air Dispersion Modeling 330 9.2.1 Introduction: Properties of the Langevin Equation 330 9.2.2 Modifying the Langevin Equation for Air Dispersion Modeling: Homogeneous Atmosphere 333 9.2.3 Langevin Equation in Heterogeneous Atmosphere 338 9.2.4 Turbulence Data for Stochastic Lagrangian Models 343 9.2.5 Stochastic Lagrangian Particle Modeling of the Convective Boundary Layer 346 9.3 Numerical Aspects of Stochastic Modeling 348 9.4 Stochastic Lagrangian Calculation Examples 353 9.5 Summary of the Main Equations 358 Problems 359 Materials Online 360 References 360 Chapter 10 Computational Fluid Dynamics and Meteorological Modeling 363 10.1 Introduction 363 10.2 CFD Model Formulation: Fundamentals 364 10.2.1 The Navier–Stokes Equation 364 10.2.2 The Material and Energy Balance 371 10.3 Reynolds–Averaged Navier–Stokes (RANS) Techniques 375 10.3.1 Averaging the Navier–Stokes Equations 375 10.3.2 Closing the Navier–Stokes Equations 379 10.3.3 Reynolds–Averaged Material and Energy Balances 392 10.4 Large Eddy Simulation (LES) 394 10.4.1 Introduction 394 10.4.2 Turbulence Modeling in LES 394 10.5 Numerical Methods in CFD 397 10.6 Meteorological Modeling 399 10.7 Summary of the Main Equations 400 References 402 Chapter 11 Eulerian Model Approaches 404 11.1 Introduction 404 11.2 Governing Equations of Eulerian Dispersion Models 405 11.3 Closing the Material Balance for Turbulent Motion 412 11.3.1 Local Closure 412 11.3.2 Nonlocal Closure 415 11.4 Atmospheric Chemistry 422 11.4.1 Introduction 422 11.4.2 Introduction to Chemical Kinetics 423 11.4.3 Introduction to Photochemical Kinetics 428 11.4.4 Gas–Phase Reactions in Tropospheric Chemistry 431 11.4.5 Chemistry of Aerosol Formation in the Troposphere 440 11.5 Numerical Aspects of Eulerian Dispersion Modeling 455 11.5.1 Advection 456 11.5.2 Diffusion/Dispersion 461 11.5.3 Chemical Reaction Kinetics 463 11.5.4 Boundary Conditions 466 11.5.5 Plume–in–Grid Modeling 467 11.6 Summary of the Main Equations 467 Problems 469 References 470 Chapter 12 Practical Aspects of Air Dispersion Modeling 474 12.1 Introduction 474 12.2 Source Characterization and Source Modeling 474 12.3 Coordinate Systems 476 12.4 Data Handling 478 12.5 Model Validation 478 References 479 Chapter 13 ISC3 and SCREEN3: A Detailed Description 480 13.1 Introduction 480 13.2 ISC3 Model Description 480 13.3 SCREEN3 Model Description 489 References 490 Chapter 14 AERMOD and AERMET: A Detailed Description 491 14.1 Introduction 491 14.2 Description of AERMET 492 14.3 Description of AERMOD 496 14.3.1 Wind Speed Profile 496 14.3.2 Potential Temperature Profile 497 14.3.3 Profile of Vertical Turbulence 498 14.3.4 Profile of Horizontal Turbulence 499 14.3.5 Calculation of Effective Variables 500 14.3.6 Complex Terrain in AERMOD 502 14.3.7 Concentration Predictions in AERMOD 503 14.3.8 Dispersion Parameters in AERMOD 508 14.3.9 Plume Rise Calculations in AERMOD 511 References 512 Chapter 15 CALPUFF and CALMET: A Detailed Description 514 15.1 Introduction 514 15.2 Description of CALMET 515 15.2.1 Coordinate System 515 15.2.2 Introduction to Wind Field Calculations in CALMET 515 15.2.3 Initial Guess Wind Field Generation in CALMET 516 15.2.4 Step 1: Wind Field Formulation in CALMET 517 15.2.5 Step 2: Wind Field Formulation in CALMET 520 15.2.6 Determination of Stability in CALMET 523 15.2.7 Precipitation Interpolation 526 15.3 Description of CALPUFF 526 15.3.1 Concentration Calculations in CALPUFF 526 15.3.2 Dispersion Parameter Calculations in CALPUFF 528 15.3.3 Plume Rise Calculations in CALPUFF 532 15.3.4 Impact of Downwash on Plume Rise and Dispersion Calculations in CALPUFF 534 15.3.5 Area Source Plume Rise Calculations in CALPUFF 537 15.3.6 Coastal Dispersion Calculations in CALPUFF 537 15.3.7 Complex Terrain Calculations in CALPUFF: Introduction 537 15.3.8 Complex Terrain Algorithm for Subgrid Scale Features (CTSG) 538 15.3.9 Simple Adjustments for Complex Terrain 540 References 541 Chapter 16 CMAQ: A Brief Description 542 16.1 Introduction 542 16.2 Main Features of CMAQ 542 16.3 Advection and Diffusion Modeling in CMAQ 544 16.4 Atmospheric Chemistry Modeling in CMAQ 545 16.4.1 Photolysis Rates 545 16.4.2 Chemical Mechanisms in CMAQ 546 16.4.3 Numerical Aspects of Chemistry in CMAQ 554 References 554 Appendix A Auxiliary Calculations and Derivations 556 Appendix B Auxiliary Da ta and Methods 596 Appendix C Theory of Near Surface Turbulence Applied to Wind Speed Profiles, Dry Deposition, Air–Water Exchange, and Canopy Effects 607 Index 629

  • ISBN: 978-1-118-07859-4
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 664
  • Fecha Publicación: 15/11/2013
  • Nº Volúmenes: 1
  • Idioma: Inglés