Carbon Nanotubes and Carbon Nanofibers in Concrete: Advantages and Potential Risks

Carbon Nanotubes and Carbon Nanofibers in Concrete: Advantages and Potential Risks

Cwirzen, Andrzej

176,80 €(IVA inc.)

Carbon Nanotubes and Carbon Nanofibers in Concrete: Advantages and Potential Risks focuses on the application of carbon nanotubes and carbon nanofibers in traditional concretes based on Portland cement. Fundamental information is given related to the production technologies of carbon nanotubes and carbon nanofibers, as well as concretes and incorporating nanomaterials. The book also contains a section focusing on the possible negative effects of carbon nanotubes and carbon nanofibers on animals and humans. That section is entirely based on the results obtained by other parties. Carbon Nanotubes and Carbon Nanofibers in Concrete: Advantages and Potential Risks indicates benefits and possible problems related to the application of carbon nanotubes and carbon nanofibers in concrete. It is designed to be easy to access and digest for the reader, aiming to reach an audience, not only from academia, but also from the construction industry, materials producers, and contractors who might work with nanomaterials. Outlines the major properties and synthesis methods for carbon nanomaterials in concrete engineeringExplains the role of carbon nanotubes and nanofillers in creating high performance concreteAssesses the major challenges of integrating carbon nanomaterials into concrete manufacture on an industrial scale INDICE: 1 Contents 2 Abbreviations 3 Foreword 4 Introduction 5 Non-carbon-based nanomaterials  5.1 Nanosilica  5.2 Titanium dioxide nanoparticles  5.3 Nanoclay  6 Carbon-based nanomaterials  6.1 Graphite, graphene, graphene oxide, diamond, fullerenes   and carbon nanobuds  6.2 Carbon nanotubes (CNTs)  6.2.1 Introduction  6.2.2 Growth mechanism  6.2.3 Applications  6.3 Carbon nanofibers (CNFs)  6.3.1 Introduction  6.3.2 Growth mechanism of CNFs  6.3.3 Applications  7 Synthesis of CNTs  7.1 Catalytic chemical vapour deposition (CCVD)  7.2 Arc-discharge (AD)  7.3 Laser ablation (LA)  8 Synthesis of CNFs  8.1 Chemical vapour deposition  8.2 Electrospinning  8.3 Arc discharge  9 Incorporation of CNTs/CNFs into concrete  9.1 Water dispersions  9.1.1 Steric repulsion (hindrance)  9.1.2 Surface functionalization  9.1.3 Effects of Ca  9.1.4 Effects of sonication 9.2 Direct synthesis on Portland cement particles  9.3 Direct synthesis on silica fume particles  9.4 Physical attachment of CNT/CNF to particles  10 Effects of CNTs/CNFs on concrete  10.1 Hydration processes and microstructure  10.1.1 CNTs/CNFs added as a water dispersion 10.1.2 Portland cement with grown CNFs  10.1.3 Cement with physically attached CNTs  10.2 Workability  10.3 Shrinkage  10.3.1 Drying shrinkage  10.3.2 Autogenous shrinkage  10.4 Mechanical properties  10.4.1 Compressive strength  10.4.2 Flexural and tensile strengths  10.4.3 Young's modulus of elasticity  10.5 Electrical properties  10.5.1 Non-conductive matrixes  10.6 Sensing capabilities  10.6.1 Piezoresistive load sensing  10.6.2 Damage detection  10.6.3 Hydration heat  10.6.4 Humidity  10.6.5 Temperature  10.7 Energy harvesting  10.7.1 Piezoelectric energy harvesting  10.7.2 Pyroelectric effect energy harvesting  10.7.3 Thermoelectric energy harvesting  10.8 Durability  10.8.1 Frost durability  10.8.2 Reinforcement corrosion  11 Possible adverse effects on humans  11.1 Carbon nanotubes (CNTs)  11.1.1 Single walled CNTs (SWCNTs)  11.1.2 Multiwalled CNTs  11.2 Carbon nanofibers (CNFs)  11.3 Release of CNTs during production and demolishing of concretes  12 Summary  13 References

  • ISBN: 978-0-323-85856-4
  • Editorial: Elsevier
  • Encuadernacion: Rústica
  • Páginas: 300
  • Fecha Publicación: 01/08/2021
  • Nº Volúmenes: 1
  • Idioma: Inglés