Understanding MEMS: Principles and Applications

Understanding MEMS: Principles and Applications

Castañer, Luis

93,60 €(IVA inc.)

The continued advancement of MEMS (micro–electro–mechanical systems) complexity, performance, commercial exploitation and market size requires an ever–expanding graduate population with state–of–the–art expertise. Understanding MEMS: Principles and Applications provides a comprehensive introduction to this complex and multidisciplinary technology that is accessible to senior undergraduate and graduate students from a range of engineering and physical sciences backgrounds. Fully self–contained, this textbook is designed to help students grasp the key principles and operation of MEMS devices and to inspire advanced study or a career in this field. Moreover, with the increasing application areas, product categories and functionality of MEMS, industry professionals will also benefit from this consolidated overview, source of relevant equations and extensive solutions to problems. Key features: Details the fundamentals of MEMS, enabling readers to understand the basic governing equations and know how they apply at the micron scale. Strong pedagogical emphasis enabling students to understand the fundamentals of MEMS devices. Self–contained study aid featuring problems and solutions. Book companion website hosts Matlab and PSpice codes and viewgraphs. INDICE: Introduction 8 .1 Scaling Of Forces 13 .1.1 Scaling Of Forces Model 13 .1.2 Weight 14 .1.2.1 Example: MEMS Accelerometer 15 .1.3 Elastic Force 15 .1.4 Electrostatic Force 16 .1.5 Capillary Force 19 .1.6 Piezoelectric Force 21 .1.7 Magnetic Force 23 .1.8 Dielectrophoretic Force 24 .1.9 Summary 27 .1.10 Problems 27 .2 Elasticity 31 .2.1 Stress 31 .2.2 Strain 35 .2.3 Stress– Strain Relationship 37 .2.4 Strain–Stress Relationship in Anisotropic Materials 39 .2.5 Miller Indices 40 .2.6 Angles of Crystallographic Planes 43 .2.7 Compliance and Stiffness Matrices for Single Crystal Silicon 44 .2.8 Orthogonal Transformation 47 .2.9 Transformation of the Stress State 49 .2.10 Orthogonal Transformation of the Stiffness Matrix 51 .2.11 Elastic Properties of Selected MEMS Materials 54 .2.12 Problems 55 .3 Bending of microstructures 57 .3.1 Static Equilibrium 58 .3.2 Free Body Diagram 59 .3.3 Neutral Plane and Curvature 60 .3.4 Pure Bending 62 .3.5 Moment Of Inertia and Bending Moment 64 .3.6 Beam Equation 66 .3.7 End Loaded Cantilever 67 .3.8 Equivalent Stiffness 69 .3.9 Beam Equation for Point Load and Distributed Load 70 .3.10 Castigliano s Second Theorem 71 .3.11 Flexures 73 .3.12 Rectangular Membrane 77 .3.13 Simplified Model for a Rectangular Membrane under Pressure 78 .3.14 Edge Clamped Circular Membrane 81 .3.15 Problems 84 .4 Piezoresistance And Piezoelectricity 91 .4.1 Electrical Resistance 91 .4.2 1d Piezoresistance Model 93 .4.3 Piezoresistance In Anisotropic Materials 95 .4.4 Orthogonal Transformation of The Ohm s Law 97 .4.5 Piezoresistance Coefficients Transformation 98 .4.6 2d Piezoresistors 102 .4.7 Pressure Sensing With Rectangular Membranes 106 .4.8 Piezoelectricity 115 .4.9 Problems 120 .5 Electrostatic Driving and Sensing 125 .5.1 Energy and Co–Energy 125 .5.2 Voltage Drive 129 .5.3 Pull–In Voltage 130 .5.3.1 Example: Forces in Parallel Plate Actuator 132 .5.4 Electrostatic Pressure 134 .5.5 Contact Resistance in Parallel Plate Switches 134 .5.6 Hold–Down Voltage 135 .5.6.1 Example: Calculation of Hold down Voltage 136 .5.7 Dynamic Response of Pull–In Based Actuators 136 .5.8 Charge Drive 138 .5.9 Extending the Stable Range 139 .5.10 Lateral Electrostatic Force 140 .5.11 Comb Actuators 141 .5.12 Capacitive Accelerometer 142 .5.13 Differential Capacitive Sensing 143 .5.14 Torsional Actuator 145 .5.15 Problems 147 .6 Resonators 151 .6.1 Free Vibration – Lumped Element Model 151 .6.2 Damped Vibration 152 .6.3 Forced Vibration 153 .6.4 Small Signal Equivalent Circuit of Resonators 158 .6.5 Rayleigh–Ritz Method 163 .6.6 Resonant Gyroscope 168 .6.7 Tuning Fork Gyroscope 172 .6.8 Problems 174 .7 Microfluidics and Electrokinetics 177 .7.1 Viscous Flow 177 .7.2 Flow In A Cylindrical Pipe 180 .7.3 Electrical Double Layer 182 .7.4 Electroosmotic Flow 185 .7.5 Electrowetting 187 .7.6 Electrowetting Dynamics 192 .7.7 Dielectrophoresis 195 .7.8 Problems 199 .8 Thermal Devices 203 .8.1 Steady State Heat Equation 203 .8.2 Thermal Resistance 206 .8.3 Platinum resistors 211 .8.4 Flow Measurement Based On Thermal Sensors 212 .8.5 Dynamic Thermal Equivalent Circuit 217 .8.6 Thermally Actuated Bimorph 219 .8.7 Thermocouple and Thermopiles 222 .8.8 Problems 224 .9 Fabrication 229 .9.1 Introduction 229 .9.2 Photolithography 230 .9.3 Patterning 231 .9.4 Lift–Off 232 .9.5 Bulk Micromachining 233 .9.5.1 Example: Angle of Walls in Silicon (100) Etching 234 .9.6 Alcaline Solutions Silicon Etch Stop 235 .9.7 Surface Micromachining 236 .9.8 Dry Etching 236 .9.9 CMOS Compatible MEMS Processing 238 .9.10 Wafer Bonding 240 .9.11 Polymumps Foundry Process 242 .9.12 Problems 243 .Appendices 247 .A Chapter 1 Solved Problems 249 .B Chapter 2 Solved Problems 261 .C Chapter 3 Solved Problems 277 .D Chapter 4 Solved Problems 297 .E Chapter 5 Solved Problems 307 .F Chapter 6 Solved Problems 325 .G Chapter 7 Solved Problems 335 .H Chapter 8 Solved Problems 343 .I Chapter 9 Solved Problems 359

  • ISBN: 978-1-119-05542-6
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 344
  • Fecha Publicación: 11/12/2015
  • Nº Volúmenes: 1
  • Idioma: Inglés