An Essential Guide to Electronic Material Surfaces and Interfaces

An Essential Guide to Electronic Material Surfaces and Interfaces

Brillson, Leonard J.

84,24 €(IVA inc.)

An Essential Guide to Electronic Material Surfaces and Interfaces is a streamlined yet comprehensive introduction that covers the basic physical properties of electronic materials, the experimental techniques used to measure them, and the theoretical methods used to understand, predict, and design them. Starting with the fundamental electronic properties of semiconductors and electrical measurements of semiconductor interfaces, this text introduces students to the importance of characterizing and controlling macroscopic electrical properties by atomic–scale techniques. The chapters that follow present the full range of surface and interface techniques now being used to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth for students to master the fundamental principles, with numerous examples to illustrate the strengths and limitations for specific applications. As well as references to the most authoritative sources for broader discussions, the text includes internet links to additional examples, mathematical derivations, tables, and literature references for the advanced student, as well as professionals in these fields. This textbook fills a gap in the existing literature for an entry–level course that provides the physical properties, experimental techniques, and theoretical methods essential for students and professionals to understand and participate in solid–state electronics, physics, and materials science research. An Essential Guide to Electronic Material Surfaces and Interfaces is an introductory–to–intermediate level textbook suitable for students of physics, electrical engineering, materials science, and other disciplines. It is essential reading for any student or professional engaged in surface and interface research, semiconductor processing, or electronic device design.  INDICE: Preface .Chapter 1 Why Surfaces and Interfaces of Electronic Materials 1.1 The Impact of Electronic Materials .1.2 Surfaces and Interface Importance as Electronics Shrink .1.3 Historical Background .1.3.1 Contact Electrification and the Development of Solid State Concepts .1.3.2 Crystal Growth and Refinement .1.3.3 Transistor Development and the Birth of Semiconductor Devices .1.3.4 Surface Science and Microelectronics 1.4 Next Generation Electronics .1.5 Problems .References Chapter 2 Semiconductor Electronic and Optical Properties 2.1 The Semiconductor Band Gap .2.2 The Fermi Level and Energy Band Parameters .2.3 Band Bending at Semiconductor Surfaces and Interfaces .2.4 Surfaces and Interfaces in Electronic Devices .2.5 Effects of Localized States: Traps, Dipoles, and Barriers .2.6 Summary .2.7 Problems .References Chapter 3 Electrical Measurements of Surfaces and Interfaces 3.1 Sheet Resistance and Contact Resistivity .3.2 Contact Measurements: Schottky Barrier Overview .3.2.1 Ideal Schottky Barriers .3.2.2 Real Schottky Barriers: Role of Interface States .3.2.3 Schottky Barrier Measurements .3.2.3.1 Current–Voltage Technique .3.2.3.2 Capacitance–Voltage Technique .3.2.3.3 Internal Photoemission Technique .3.2.4 Schottky Barrier Conclusions .3.3 Heterojunction Band Offsets: Electrical Measurements .3.4 Summary .3.5 Problems .References Chapter 4 Localized States at Surfaces and Interfaces .4.1 Interface state models .4.2 Intrinsic Surface States .4.2.1 Experimental Approaches .4.2.2 Theoretical Approaches .4.2.3 Key Intrinsic Surface State Results .4.3 Extrinsic Surface States .4.4 The Solid State Interface: Changing Perspectives .4.5 Problems .References Chapter 5 Ultrahigh vacuum technology 5.1 Ultrahigh Vacuum Vessels .5.1.1 Ultrahigh vacuum pressures .5.1.2 Stainless steel UHV chambers .5.2 Pumps .5.3 Manipulators .5.4 Gauges .5.5 Residual Gas Analysis .5.6 Deposition Sources .5.7 Deposition Monitors .5.8 Summary .5.9 Problems .References Chapter 6 Surface and Interface Analysis 6.1 Surface and Interface Techniques .6.2 Excited Electron Spectroscopies .6.3 Principles of Surface Sensitivity .6.4 Multi–technique UHV Chambers .6.5 Summary .6.6 Problems .References Chapter 7 Surface and Interface Spectroscopies 7.1 Photoemission Spectroscopy .7.1.1 The Photoelectric Effect .7.1.2 Energy Distribution Curves .7.1.3 Atomic Orbital Binding Energies .7.1.4 Photoionization Cross Sections .7.1.5 Principles of X–Ray Photoelectron Spectroscopy .7.1.5.1 Chemical Species Identification and Chemical Shifts .7.1.5.2 Depth–Dependent Measurements .7.1.5.3 Band Bending .7.1.6 Advanced Surface and Interface Techniques .7.1.6.1 Angle–Resolved Photoemission Spectroscopy .7.1.6.2 X–Ray Absorption Spectroscopy .7.1.7 Excitation Sources: X–Ray, Ultraviolet, and Synchrotron .7.1.8 Electron Energy Analyzers .7.1.9 Photoemission Spectroscopy Summary .7.2 Auger Electron Spectroscopy .7.2.1 Auger versus X–Ray Transition Probabilities .7.2.2 Auger Electron Energies .7.2.3 Quantitative AES Analysis .7.2.4 Auger Electron Spectroscopy Summary .7.3 Electron Energy Loss Spectroscopy .7.3.1 Dielectric Response Theory .7.3.2 Surface Phonon Scattering .7.3.3 Plasmon Scattering .7.3.4 Interface Electronic Transitions .7.3.5 Transmission Electron Microscopy Energy Loss Spectroscopy .7.3.6 Electron Energy Loss Spectroscopy Summary .7.4 Rutherford Backscattering Spectrometry .7.4.1 Theory of Rutherford Backscattering .7.4.2 Rutherford Backscattering Experiment .7.4.3 RBS Experimental Spectra .7.4.4 RBS Interface Studies .7.4.5 Channeling and Blocking .7.4.6 Rutherford Backscattering Spectroscopy Summary .7.5 Surface and Interface Technique Summary .7.6 Problems .References Chapter 8 Dynamical Depth–Dependent Analysis and Imaging 8.1 Ion Beam–Induced Surface Ablation 8.2 Auger Electron Spectroscopy .8.3 X–Ray Photoemission Spectroscopy .8.4 Secondary Ion Mass Spectrometry .8.4.1 SIMS Principles .8.4.2 SIMS Equipment .8.4.3 Secondary Ion Yields .8.4.4 Organic and Biological Species .8.4.5 SIMS Summary .8.5 Spectroscopy Imaging .8.6 Depth–Resolved and Imaging Summary .8.7 Problems .References Chapter 9 Electron Beam Diffraction and Microscopy of Atomic–Scale Geometrical Structure .9.1 Low Energy Electron Diffraction Principles .9.1.1 Low–Energy Electron Diffraction Techniques .9.1.2 LEED Equipment .9.1.3 LEED Kinematics .9.1.4 LEED Reconstructions, Surface Lattices, and Superstructures .9.1.5 Representative Semiconductor Reconstructions .9.2 Reflection High Energy Electron Diffraction .9.2.1 Principles of RHEED .9.2.2 Coherence Length .9.2.3 RHEED Oscillations .9.3 Scanning Electron Microscopy .9.3.1 Scanning Auger Microscopy .9.3.2 Photoelectron Microscopy .9.4 Transmission Electron Microscopy .9.4.1 Atomic Imaging: Z–Contrast .9.4.2 Surface Atomic Geometry .9.4.3 Electron Energy Loss Spectroscopy .9.5 Electron Beam Diffraction and Microscopy Summary .9.6 Problems .References Chapter 10 Scanning Probe Techniques .10.1 Atomic Force Microscopy .10.1.1 Non–Contact Mode AFM .10.1.2 Kelvin Probe Force Microscopy .10.1.3 Contact Mode AFM .10.2 Scanning Tunneling Microscopy .10.2.1 STM Overview .10.2.2 Tunneling Theory .10.2.3 Surface Atomic Structure .10.3 Ballistic Electron Energy Microscopy .10.4 Atomic Positioning .10.5 Summary .10.6 Problems .References Chapter 11 Optical Spectroscopies .11.1 Overview .11.2 Optical Absorption .11.3 Modulation Techniques .11.4 Multiple Surface Interaction Techniques .11.5 Spectroscopic Ellipsometry .11.6 Surface Enhanced Raman Spectroscopy .11.7 Surface Photoconductivity .11.8 Surface Photovoltage Spectroscopy .11.8.1 Transient Surface Photovoltage Spectroscopy .11.9 Photoluminescence Spectroscopy .11.10 Cathodoluminescence Spectroscopy .11.10.1 Overview .11.10.2 Theory .11.10.3 Semiconductor Ionization Energies .11.10.4 Universal Range–Energy Relations .11.10.5 Monte Carlo Simulations .11.10.6 Depth–Resolved Cathodoluminescence Spectroscopy .11.10.7 Spatially–Resolved Cathodoluminescence Spectroscopy and Imaging .11.11 Summary .11.12 Problems .References Chapter 12 Electronic Material Surfaces .12.1 Geometric Structure .12.1.1 Surface Relaxation and Reconstruction .12.1.2 Extended Geometric Structure .12.2 Chemical Structure .12.2.1 Crystal Growth .12.2.2 Etching .12.2.3 Adsorbates .12.2.4 Epitaxical Overlayers .12.2.5 Growth Modes .12.2.6 Interface Chemical Reaction .12.3 Electronic Structure .12.3.1 Physisorption .12.3.2 Chemisorption .12.3.3 Surface Dipoles .12.4 Summary .12.5 Problems .References Chapter 13 Surface Electronic Applications 13.1 Charge Transfer and Band Bending .13.1.1 Sheet Conductance .13.1.2 Transient Effects .13.2 Oxide Gas Sensors .13.3 Granular Gas Sensors .13.4 Nanowire Sensors .13.5 Chemical and Biosensors .13.5.1 Sensor Sensitivity .13.5.2 Sensor Selectivity .13.6 Surface Electronic Temperature, Pressure, and Mass Sensors .13.7 Summary .13.8 Problems .References Chapter 14 Semiconductor Heterojunctions .14.1 Geometrical Structure .14.1.1 Epitaxial Growth .14.1.2 Lattice Matching .14.1.2.1 Alloy Composition and Lattice Match .14.1.2.2 Lattice Mismatched Interfaces .14.1.2.3 Dislocation and Strain .14.1.3 Two–Dimensional Electron Gas Heterojunctions .14.1.4 Strained Layer Superlattices .14.1.4.1 Superlattice Energy Bands .14.1.4.2 Strain–Induced Polarization .14.2 Chemical Structure .14.2.1 Interdiffusion .14.2.2 Chemical Reactions .14.2.3 Template Overlayers .14.2.3.1 MonolayerPassivation and Surfactants .14.2.3.2 Orientation Dependence .14.3 Electronic Structure .14.3.1 Heterojunction Band Offsets .14.3.2 Band Offset Measurements .14.3.2.1 Electrical and Optical Techniques .14.3.2.2 Scanned Probe Techniques .14.3.2.3 Photoemission Spectroscopy Techniques .14.3.3 Inorganic Heterojunction Results .14.3.4 Organic Heterojunctions .14.3.5 Heterojunction Band Offset Theories .14.3.5.1 Charge Neutrality Levels .14.3.5.2 Local Bond Approaches .14.3.6 Interface Effects on Band Offsets .14.3.6.1 Growth Sequence .14.3.6.2 Crystallographic Orientation .14.3.6.3 Interface Bonding .14.3.7 Theoretical Methods .14.3.7.1 First Principles Calculations .14.3.7.2 Mathematical Approach .14.3.7.3 Heterovalent Interfaces Polarity and Interfacial Bonding Dependence .14.3.8 Band Offset Engineering .14.3.8.1 Atomic Interlayers .14.3.8.2 Local Nonstoichiometry .14.4 Conclusions .14.5 Problems .References Chapter 15 Metal–Semiconductor Interfaces 15.1 Overview .15.2 Metal–Semiconductor Interface Dipoles .15.3 Interface States .15.3.1 Localized States .15.3.2 Metal–Induced Gap States .15.3.3 Charge Transfer, Electronegativity, and Defects .15.3.4 Imperfections, Impurities, and Native Defects .15.3.5 Chemisorption, Interface Reaction, and Interfacial Phases .15.3.6 Organic Semiconductor–Metal Interfaces .15.4 Self–Consistent Electrostatic Calculations .15.5 Experimental Schottky Barriers .15.5.1 Metals on Si and Ge .15.5.1.1 Clean Cleaved Si .15.5.1.2 Etched and Oxidized Si .15.5.2 Metals on III–V Compound Semiconductors .15.5.2.1 GaAs(110) Pinned Surfaces .15.5.2.2 Oxidized GaAs(110) Surfaces .15.5.2.3 InP(110) Unpinned Schottky Barriers .15.5.2.4 GaN Schottky Barriers .15.5.2.5 Other III–V Binary and Ternary Semiconductors .15.5.3 Metals on II–VI Compound Semiconductors .15.5.3.1 ZnO Schottky Barriers .15.5.3.2 Effect of Native Defects .15.5.3.3 Effect of Polarity .15.5.4 Other Compound Semiconductors .15.5.5 Compound Semiconductor Summary .15.6 Interface Barrier Height Engineering .15.6.1 Macroscopic Methods .15.6.2 Defect Formation .15.6.3 Thermally–Induced Phase Formation .15.6.4 Interdiffused Ohmic Contacts .15.7 Atomic–Scale Control .15.7.1 Reactive Metal Interlayers .15.7.2 Molecular Buffer Layers .15.7.3 Semiconductor Interlayers .15.7.4 Wet Chemical Treatments .15.7.4.1 Photochemical Washing .15.7.4.2 Inorganic Sulfides, Thermal Oxides, and Hydrogen .15.7.5 Crystal Growth .15.7.5.1 Stoichiometry and Defect Control .15.7.5.2 Vicinality .15.7.5.3 Metal Epitaxy and Strain .15.8 Summary .15.9 Problems .References Chapter 16 Next Generation Surfaces and Interfaces 16.1 Current Status .16.2 Current Device Challenges .16.3 Emerging Directions .16.3.1 High–K Dielectrics .16.3.2 Complex Oxides .16.3.3 Spintronics and Topological Insulators .16.3.4 Nanostructures .16.3.5 Two–Dimensional Materials .16.3.6 Quantum–Scale Interfaces .16.4 The Essential Guide Conclusions .References Appendices Appendix.1. Glossary of Commonly Used Symbols .Appendix.2. Table of Acronyms .Appendix.3. Physical Constants and Conversion Factors .Appendix.4. Table of Semiconductor Properties .Index

  • ISBN: 978-1-119-02711-9
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 336
  • Fecha Publicación: 08/07/2016
  • Nº Volúmenes: 1
  • Idioma: Inglés