Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effectsare first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then, several configurations of importance to microfluidics, most notably thin films/dropletson substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces,evaporation/condensation, and surfactant phenomena are discussed in the later chapters. Discusses mathematical models in the context of actual applications such as electrowetting. Includes unique material on fluid flow near structured surfaces and phase changephenomena. Shows readers how to solve modeling problems related to microscale multiphase flows INDICE: Basic Phenomena and Applications to Thin Films. Coating flows and contact line models. Bubbles and film drainage. Flows in the presence of electric charges and fields. Flows near structured surfaces. Phase change at interfaces. Flows with surfactants.-Selected Definitions and Theorems from Thermodynamics. MATLAB Codes.
- ISBN: 978-1-4614-1340-0
- Editorial: Springer New York
- Encuadernacion: Cartoné
- Páginas: 214
- Fecha Publicación: 31/01/2012
- Nº Volúmenes: 1
- Idioma: Inglés